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Abstract
The well-known problem of beam–plasma instability acquires new aspects
when one or both of the two components (the beam and the plasma) are
strongly interacting. We have now theoretically considered the case when
the plasma is in the solid phase and forms a lattice. In this situation, the
inherent anisotropy of the lattice leads to a coupling between the longitudinal
and transverse polarizations. One of the novel features of the beam–plasma
instability in this scenario is the possible excitation of transverse modes, which
should be an experimentally observable signature of the instability. We have
initially concentrated on a 2D toy model with the beam lying in the lattice plane.
At the same time, we have initiated a molecular dynamics simulation program
for studying various aspects of the penetration of a beam into a plasma lattice.
The beam parameters can be adjusted in order to see the effects of increasing
coupling strength within the beam and to distinguish between collective
phenomena and scattering on individual particles. When both components
are strongly interacting, a number of remarkable phenomena—trapping of
beam particles, creation of dislocations, local melting of the lattice—may be
observed.
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1. Introduction

In this paper, we examine how beam–plasma instabilities develop in strongly coupled
plasmas, in particular when the plasma is in the crystalline state, in order to motivate related
experiments in dusty plasmas. A beam of light particles (e.g. ions) penetrating a dusty plasma,
or two inter-penetrating dusty plasmas, are expected to generate a beam–plasma instability
[1, 2]. In a Vlasov plasma, beam–plasma instabilities result in the excitation of longitudinal
plasmons. In a strongly coupled plasma, transverse (shear) waves develop, and under certain
circumstances one can expect the excitation of transverse waves as a result of a beam–plasma
instability [3]. This is because the phonon eigenmodes in the crystalline solid state in general
have a mixed longitudinal–transverse polarization.

The plasma system we wish to analyse reflects the properties of a complex plasma in a
crystalline state, consisting of highly charged mesoscopic grains, immersed in a background
of a polarizable electron–ion plasma; the effect of this latter is assumed to be restricted to
modifying the grain–grain interaction to a screened, Yukawa type interaction. We approach the
issue in several stages. First, we establish a collective coordinate formalism, appropriate for the
analysis of a beam penetrating into a lattice. Next, we construct a two-dimensional toy model
amenable to analytic treatment, and show that excitation of transverse waves can occur indeed,
with growth rates comparable to longitudinal growth rates. Finally, computer simulation results
highlight the various scenarios that can take place in beam–lattice interactions.

2. Analytical and numerical results

In order to analyse the combined beam–lattice system, a common language appropriate for
both systems has to be established. In a lattice, particle i is displaced from its equilibrium
position x

µ

i by ξ
µ

i . Phonons are conventionally described in terms of the collective coordinates
ξ

µ

k defined by

ξ
µ

i = 1

V

∑
k

ξ
µ

k eik·xi . (1)

A similar language can be adopted for the beam, by defining a beam collective coordinate

η
µ

i = 1

V

∑
k

η
µ

k eik·xi . (2)

Assuming that (i) the interaction within the beam and between the beam and the lattice is weak
and that (ii) the beam couples to the longitudinal mode only, the fundamental equation for the
system is (note that the interaction potential has not yet been specified)

ω2ξ
µ

k =
{
�2

0(k)
kµkν

k2
+ Dµν(k)

}
ξν

k + ω2
0(k)

kµkν

k2
ην

k

(3)

(ω − k · v)2η
µ

k = �2
0(k)

kµkν

k2
ξν

k + ω2
0(k)

kµkν

k2
ην

k.

Here �0(k) is the frequency of the Vlasov (RPA) plasma mode in the unperturbed system
(with no beam), ω0(k) is the Vlasov plasma mode in the beam, v is the beam velocity, and
Dµν(k) is the lattice dynamical matrix. In the unperturbed system, the quasi-longitudinal and
quasi-transverse phonons are denoted by �L(k) and �T (k), respectively. The growth rates δL

and δT are provided by the solution of equation (3) in the vicinity of the unperturbed phonon
frequencies

ωm(k) ≈ �m(k) + δm, (4)
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Figure 1. Representative plots for phonon dispersions and polarizations. Dashed lines correspond
to quasi-longitudinal and solid lines to quasi-transverse modes, respectively. ê1 and ê2 are the
polarization vectors. The numerical analysis was done for α = 1

4 and γ = 1
12 .

where m = L, T for the two modes respectively, together with the beam–plasma resonance
condition

ω − k · v ≈ δm. (5)

We have analysed a simple model, originally devised by Montroll [4], that provides an
analytical expression for the phonon dispersions. The model comprises a two-dimensional
square lattice with principal axes along x and y, and considers nearest neighbour and next-
nearest neighbour interactions only (with respective coupling constants α and γ , where γ < α).
We refer to this as a ‘toy model’ which may represent qualitatively a Yukawa system in the
limit of large screening, noting that the full Yukawa interaction and the actual hexagonal
geometry of a Yukawa lattice would affect quantitative results. The quasi-longitudinal and
quasi-transverse modes are given by

�2
L,T (k, φ) = D11 + D22

2
+ �2

0 ± 1

2

√
D2

11 − 2D11D22 + D2
22 + 4D12D21 , (6)

where
D11,22 = A1,2 cos2 φ + A2,1 sin2 φ ± 2B sin φ cos φ,

D12 = D21 = (A2 − A1) sin φ cos φ + B(cos2 φ − sin2 φ),

A1,2 = −2α(1 + cos k̄x,y) + 4γ (1 − cos k̄x cos k̄y), B = 4γ sin k̄x sin k̄y

(7)

�2
0 = 4α, φ is the angle between k and the x axis, and k̄ = ka, where a is the lattice constant.

Figure 1 shows representative results. Note the qualitative resemblance to the 2D Yukawa
phonon dispersion [5]. (For a κ = 1 Yukawa screening parameter, the ratio α/γ would be
≈4.5). The beam is taken to be in the plane of the lattice and its directed velocity is in the x
direction. We assume the beam particles are weakly coupled to each other and to the lattice.
The motion of the lattice particles is determined by all the microscopic forces acting on them
and thus includes both the effects of collisions between charged particles and of their collective
interactions. However, collisions with neutral particles are not included at this stage. The
frequencies �m(k, φ) and wave numbers km(v, φ) (m = L, T ), in the vicinity of which the
instabilities are generated, are determined by the beam resonance condition

�m(k, φ) = kv cos φ. (8)
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Figure 2. Longitudinal (dashed) and transverse (solid lines) growth rates for three different beam
speeds v̄ = v/(�0a). (α = 1

4 , γ = 1
12 ). If v is higher than one of the sound speeds, there

are angles for which the resonance condition (8) is not satisfied. The insets show the resonance
condition for φ = 30◦.

Table 1. The parameters used in the MD simulations of figure 3. Subscripts b and p stand for
‘beam’ and ‘plasma’, respectively.

ν µ ζ f h u w

nb/np Mb/Mp Qb/Qp v/(�pa)
Mbv2

2

/
QpQb

a

(
nb

Mbv2

2

)/(
np

QpQb

a

)
ωp/�p

0.001 10 1 3 90 0.09 0.002
0.1 0.1 0.1 3 9 0.09 0.18

The relationship between the beam speed v and the longitudinal and transverse sound speeds
sL, sT determines the qualitative behaviour of the growth rates. The longitudinal and transverse
growth rates depend on the respective frequencies and thus ultimately, for a given beam speed
and direction, there are two growth rates δL(v, φ) and δT (v, φ) (figure 2). The longitudinal and
transverse growth rates are of the same order, but the transverse instability generally appears
for larger angles. For beam speeds between the longitudinal and transverse sound speeds, the
transverse instability could be more important, because it appears at lower k values.

3. Computer simulations in 2D

Molecular dynamics simulations can provide a valuable insight into the behaviour of a plasma
excited by a particle beam [6]. In our MD simulation, particles are assumed to interact via the
Yukawa potential, with κ = 1.0. At the initialization of the simulation, the plasma particles
are arranged in a hexagonal lattice with a nearest neighbour distance set to 1 µm. Beam
particles of given (i) number, (ii) charge, (iii) mass and (iv) velocity are injected from one side
of the simulation domain (at x = 0 and from random positions in the perpendicular direction).
Their subsequent motion is determined by the interaction with the plasma particles. When a
beam particle leaves the simulation domain, a new beam particle is again injected at x = 0 in
order to keep the number of beam particles constant. It should be noted that, in contrast to the
theoretical model, here the computer code includes the full electrostatic interaction between
all, i.e., beam and plasma, particles. By choosing different density, charge and mass ratios
between the plasma and beam particles, different conditions of the beam–plasma interaction
are realized; e.g. massive and high-velocity beam particles can be observed to pass through
the simulation domain without significant momentum transfer, while light particles may be
trapped in the potential minima of the plasma lattice.

The simulations have been performed for various combinations of parameters, shown
in table 1, namely ν, the ratio of the beam to plasma density, µ, the ratio of the masses
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Figure 3. Two examples of MD simulations. Each row shows three snapshots of a supersonic
(f = 3) beam incoming from the left. In the first row, the snapshots were taken at times ωpt =
15.9, 110.9 and 232.5, respectively. In the second row, the times are 0.2, 42.4 and 118.5. The
interparticle distance for the plasma before the impact of the beam is 1 µm, and the units of the x
and y axes are given in metres.

of the beam and plasma particles, and ζ , the ratio of the beam to plasma particle charge,
as well as the ratio f of the beam speed to the sound speed, that determines whether the
flow is supersonic (f > 1) or subsonic (f < 1). In figure 3, the sequence of snapshots
on the top shows the waves and the subsequent disorder generated in the wake of a single
massive beam particle with supersonic speed. The bottom sequence shows the turbulence
generated by the passage of a beam of light particles with density amounting to 10% of
the density of the plasma. While collective effects seem to be prevalent in both cases, it is
difficult in general to separate them from the effect of two-particle collisions without further
study.

4. Conclusions

When the plasma is in the crystalline solid state, the character of the beam–plasma instability
(weak beam penetrating into the lattice) changes: due to the mixed polarizations of the lattice
phonons, both longitudinal and transverse instabilities are generated. Since the longitudinal
and transverse sound velocities are different, the beam velocity can be tuned to a value where
for low k values (most resilient to damping) only the transverse instability is excited. Large
amplitude transverse waves seem to be more efficient in creating disorder in the lattice or
melting it than the longitudinal ones. The more general case, when two strongly coupled
plasmas penetrate into each other, requires more theoretical work for better understanding and
experimental diagnostic tools to separate effects due to particle–particle scattering from those
due to collective instabilities.
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